| 1 | //! @file optimal.hpp |
| 2 | //! @author ryftchen |
| 3 | //! @brief The declarations (optimal) in the algorithm module. |
| 4 | //! @version 0.1.0 |
| 5 | //! @copyright Copyright (c) 2022-2025 ryftchen. All rights reserved. |
| 6 | |
| 7 | #pragma once |
| 8 | |
| 9 | #include <functional> |
| 10 | #include <optional> |
| 11 | #include <random> |
| 12 | #include <unordered_set> |
| 13 | |
| 14 | //! @brief The algorithm module. |
| 15 | namespace algorithm // NOLINT(modernize-concat-nested-namespaces) |
| 16 | { |
| 17 | //! @brief Optimal-related functions in the algorithm module. |
| 18 | namespace optimal |
| 19 | { |
| 20 | //! @brief Brief function description. |
| 21 | //! @return function description (module_function) |
| 22 | inline static const char* description() noexcept |
| 23 | { |
| 24 | return "ALGO_OPTIMAL" ; |
| 25 | } |
| 26 | extern const char* version() noexcept; |
| 27 | |
| 28 | //! @brief Target functions. |
| 29 | using Function = std::function<double(const double)>; |
| 30 | //! @brief The precision of calculation. |
| 31 | inline constexpr double epsilon = 1e-5; |
| 32 | |
| 33 | //! @brief Optimal methods. |
| 34 | class Optimal |
| 35 | { |
| 36 | public: |
| 37 | //! @brief Construct a new Optimal object. |
| 38 | Optimal() = default; |
| 39 | //! @brief Destroy the Optimal object. |
| 40 | virtual ~Optimal() = default; |
| 41 | //! @brief Construct a new Optimal object. |
| 42 | Optimal(const Optimal&) = default; |
| 43 | //! @brief Construct a new Optimal object. |
| 44 | Optimal(Optimal&&) noexcept = default; |
| 45 | //! @brief The operator (=) overloading of Optimal class. |
| 46 | //! @return reference of the Optimal object |
| 47 | Optimal& operator=(const Optimal&) = default; |
| 48 | //! @brief The operator (=) overloading of Optimal class. |
| 49 | //! @return reference of the Optimal object |
| 50 | Optimal& operator=(Optimal&&) noexcept = default; |
| 51 | |
| 52 | //! @brief The operator (()) overloading of Optimal class. |
| 53 | //! @param left - left endpoint |
| 54 | //! @param right - right endpoint |
| 55 | //! @param eps - precision of calculation |
| 56 | //! @return result of optimal |
| 57 | virtual std::optional<std::tuple<double, double>> operator()( |
| 58 | const double left, const double right, const double eps) = 0; |
| 59 | }; |
| 60 | |
| 61 | //! @brief Gradient descent (GD). |
| 62 | class Gradient : public Optimal |
| 63 | { |
| 64 | public: |
| 65 | //! @brief Construct a new Gradient object. |
| 66 | //! @param func - target function |
| 67 | //! @param initialLR - predefined initial learning rate |
| 68 | //! @param decay - predefined decay |
| 69 | //! @param loopTime - predefined loop time |
| 70 | explicit Gradient( |
| 71 | Function func, const double initialLR = 0.01, const double decay = 0.1, const std::uint32_t loopTime = 500) : |
| 72 | func{std::move(func)}, initialLR{initialLR}, decay{decay}, loopTime{loopTime} |
| 73 | { |
| 74 | } |
| 75 | |
| 76 | //! @brief The operator (()) overloading of Gradient class. |
| 77 | //! @param left - left endpoint |
| 78 | //! @param right - right endpoint |
| 79 | //! @param eps - precision of calculation |
| 80 | //! @return result of optimal |
| 81 | std::optional<std::tuple<double, double>> operator()( |
| 82 | const double left, const double right, const double eps) override; |
| 83 | |
| 84 | private: |
| 85 | //! @brief Target function. |
| 86 | const Function func; |
| 87 | //! @brief Initial learning rate. |
| 88 | const double initialLR{0.01}; |
| 89 | //! @brief Decay. |
| 90 | const double decay{0.1}; |
| 91 | //! @brief Loop time. |
| 92 | const std::uint32_t loopTime{500}; |
| 93 | |
| 94 | //! @brief Create climbers. |
| 95 | //! @param left - left endpoint |
| 96 | //! @param right - right endpoint |
| 97 | //! @return collection of climbers |
| 98 | [[nodiscard]] std::unordered_multiset<double> createClimbers(const double left, const double right) const; |
| 99 | //! @brief Calculate the first derivative. |
| 100 | //! @param x - independent variable |
| 101 | //! @param eps - precision of calculation |
| 102 | //! @return value of the first derivative |
| 103 | [[nodiscard]] double calculateFirstDerivative(const double x, const double eps) const; |
| 104 | }; |
| 105 | |
| 106 | //! @brief Tabu search (TS). |
| 107 | class Tabu : public Optimal |
| 108 | { |
| 109 | public: |
| 110 | //! @brief Construct a new Tabu object. |
| 111 | //! @param func - target function |
| 112 | //! @param tabuTenure - predefined tabu tenure |
| 113 | //! @param initialStep - predefined initial step length |
| 114 | //! @param expDecay - predefined exponential decay of step length |
| 115 | //! @param neighborSize - predefined neighborhood size |
| 116 | //! @param maxIterations - predefined maximum number of iterations |
| 117 | explicit Tabu( |
| 118 | Function func, |
| 119 | const std::uint32_t tabuTenure = 50, |
| 120 | const double initialStep = 1.0, |
| 121 | const double expDecay = 0.95, |
| 122 | const std::uint32_t neighborSize = 100, |
| 123 | const std::uint32_t maxIterations = 500) : |
| 124 | func{std::move(func)}, |
| 125 | tabuTenure{tabuTenure}, |
| 126 | initialStep{initialStep}, |
| 127 | expDecay{expDecay}, |
| 128 | neighborSize{neighborSize}, |
| 129 | maxIterations{maxIterations} |
| 130 | { |
| 131 | } |
| 132 | |
| 133 | //! @brief The operator (()) overloading of Tabu class. |
| 134 | //! @param left - left endpoint |
| 135 | //! @param right - right endpoint |
| 136 | //! @param eps - precision of calculation |
| 137 | //! @return result of optimal |
| 138 | std::optional<std::tuple<double, double>> operator()( |
| 139 | const double left, const double right, const double eps) override; |
| 140 | |
| 141 | private: |
| 142 | //! @brief Target function. |
| 143 | const Function func; |
| 144 | //! @brief Tabu tenure. |
| 145 | const std::uint32_t tabuTenure{50}; |
| 146 | //! @brief Initial step length. |
| 147 | const double initialStep{1.0}; |
| 148 | //! @brief Exponential decay of step length. |
| 149 | const double expDecay{0.95}; |
| 150 | //! @brief Neighborhood size. |
| 151 | const std::uint32_t neighborSize{100}; |
| 152 | //! @brief Maximum number of iterations. |
| 153 | const std::uint32_t maxIterations{500}; |
| 154 | |
| 155 | //! @brief Update the neighborhood. |
| 156 | //! @param neighborhood - neighborhood of solution |
| 157 | //! @param solution - current solution |
| 158 | //! @param stepLen - step length |
| 159 | //! @param left - left endpoint |
| 160 | //! @param right - right endpoint |
| 161 | void updateNeighborhood( |
| 162 | std::vector<double>& neighborhood, |
| 163 | const double solution, |
| 164 | const double stepLen, |
| 165 | const double left, |
| 166 | const double right) const; |
| 167 | //! @brief Neighborhood search. |
| 168 | //! @param neighborhood - neighborhood of solution |
| 169 | //! @param solution - current solution |
| 170 | //! @param tabuList - tabu list |
| 171 | //! @return best fitness and solution |
| 172 | std::tuple<double, double> neighborhoodSearch( |
| 173 | const std::vector<double>& neighborhood, const double solution, const std::vector<double>& tabuList); |
| 174 | }; |
| 175 | |
| 176 | //! @brief Simulated annealing (SA). |
| 177 | class Annealing : public Optimal |
| 178 | { |
| 179 | public: |
| 180 | //! @brief Construct a new Annealing object. |
| 181 | //! @param func - target function |
| 182 | //! @param initialT - predefined initial temperature |
| 183 | //! @param minimalT - predefined minimal temperature |
| 184 | //! @param coolingRate - predefined cooling rate |
| 185 | //! @param markovChainLen - predefined length of Markov chain |
| 186 | explicit Annealing( |
| 187 | Function func, |
| 188 | const double initialT = 100.0, |
| 189 | const double minimalT = 0.01, |
| 190 | const double coolingRate = 0.99, |
| 191 | const std::uint32_t markovChainLen = 100) : |
| 192 | func{std::move(func)}, |
| 193 | initialT{initialT}, |
| 194 | minimalT{minimalT}, |
| 195 | coolingRate{coolingRate}, |
| 196 | markovChainLen{markovChainLen} |
| 197 | { |
| 198 | } |
| 199 | |
| 200 | //! @brief The operator (()) overloading of Annealing class. |
| 201 | //! @param left - left endpoint |
| 202 | //! @param right - right endpoint |
| 203 | //! @param eps - precision of calculation |
| 204 | //! @return result of optimal |
| 205 | std::optional<std::tuple<double, double>> operator()( |
| 206 | const double left, const double right, const double eps) override; |
| 207 | |
| 208 | private: |
| 209 | //! @brief Target function. |
| 210 | const Function func; |
| 211 | //! @brief Initial temperature. |
| 212 | const double initialT{100.0}; |
| 213 | //! @brief Minimal temperature. |
| 214 | const double minimalT{0.01}; |
| 215 | //! @brief Cooling rate. |
| 216 | const double coolingRate{0.99}; |
| 217 | //! @brief Length of Markov chain. |
| 218 | const std::uint32_t markovChainLen{100}; |
| 219 | |
| 220 | //! @brief Temperature-dependent Cauchy-like distribution. |
| 221 | //! @param prev - current model |
| 222 | //! @param min - minimum of model |
| 223 | //! @param max - maximum of model |
| 224 | //! @param temp - current temperature |
| 225 | //! @param xi - random number in the interval [0, 1] |
| 226 | //! @return new model |
| 227 | static double cauchyLikeDistribution( |
| 228 | const double prev, const double min, const double max, const double temp, const double xi); |
| 229 | //! @brief Metropolis acceptance criterion which based on the Metropolis-Hastings algorithm. |
| 230 | //! @param deltaE - energy difference |
| 231 | //! @param temp - current temperature |
| 232 | //! @param xi - random number in the interval [0, 1] |
| 233 | //! @return accept or not |
| 234 | static bool metropolisAcceptanceCriterion(const double deltaE, const double temp, const double xi); |
| 235 | }; |
| 236 | |
| 237 | //! @brief Particle swarm optimization (PSO). |
| 238 | class Particle : public Optimal |
| 239 | { |
| 240 | public: |
| 241 | //! @brief Construct a new Particle object. |
| 242 | //! @param func - target function |
| 243 | //! @param c1 - predefined cognitive coefficient |
| 244 | //! @param c2 - predefined social coefficient |
| 245 | //! @param wBegin - predefined inertia weight beginning value |
| 246 | //! @param wEnd - predefined inertia weight ending value |
| 247 | //! @param vMax - predefined maximum velocity |
| 248 | //! @param vMin - predefined minimum velocity |
| 249 | //! @param swarmSize - predefined swarm size |
| 250 | //! @param maxIterations - predefined maximum number of iterations |
| 251 | explicit Particle( |
| 252 | Function func, |
| 253 | const double c1 = 1.5, |
| 254 | const double c2 = 1.5, |
| 255 | const double wBegin = 0.85, |
| 256 | const double wEnd = 0.35, |
| 257 | const double vMax = 0.5, |
| 258 | const double vMin = -0.5, |
| 259 | const std::uint32_t swarmSize = 100, |
| 260 | const std::uint32_t maxIterations = 100) : |
| 261 | func{std::move(func)}, |
| 262 | c1{c1}, |
| 263 | c2{c2}, |
| 264 | wBegin{wBegin}, |
| 265 | wEnd{wEnd}, |
| 266 | vMax{vMax}, |
| 267 | vMin{vMin}, |
| 268 | swarmSize{swarmSize}, |
| 269 | maxIterations{maxIterations} |
| 270 | { |
| 271 | } |
| 272 | |
| 273 | //! @brief The operator (()) overloading of Particle class. |
| 274 | //! @param left - left endpoint |
| 275 | //! @param right - right endpoint |
| 276 | //! @param eps - precision of calculation |
| 277 | //! @return result of optimal |
| 278 | std::optional<std::tuple<double, double>> operator()( |
| 279 | const double left, const double right, const double eps) override; |
| 280 | |
| 281 | private: |
| 282 | //! @brief Target function. |
| 283 | const Function func; |
| 284 | //! @brief Cognitive coefficient. |
| 285 | const double c1{1.5}; |
| 286 | //! @brief Social coefficient. |
| 287 | const double c2{1.5}; |
| 288 | //! @brief Inertia weight beginning value. |
| 289 | const double wBegin{0.85}; |
| 290 | //! @brief Inertia weight ending value. |
| 291 | const double wEnd{0.35}; |
| 292 | //! @brief Maximum velocity. |
| 293 | const double vMax{0.5}; |
| 294 | //! @brief Minimum velocity. |
| 295 | const double vMin{-0.5}; |
| 296 | //! @brief Swarm size. |
| 297 | const std::uint32_t swarmSize{100}; |
| 298 | //! @brief Maximum number of iterations. |
| 299 | const std::uint32_t maxIterations{100}; |
| 300 | //! @brief Random engine. |
| 301 | std::mt19937_64 engine{std::random_device{}()}; |
| 302 | //! @brief The perturbation for the coefficient (from 0 to 1). |
| 303 | std::uniform_real_distribution<double> perturbation{0.0, 1.0}; |
| 304 | |
| 305 | //! @brief Individual information in the swarm. |
| 306 | struct Individual |
| 307 | { |
| 308 | //! @brief Position vector. |
| 309 | double x{0.0}; |
| 310 | //! @brief Velocity vector. |
| 311 | double v{0.0}; |
| 312 | //! @brief Personal best position. |
| 313 | double persBest{0.0}; |
| 314 | //! @brief Fitness of the position vector. |
| 315 | double fitness{0.0}; |
| 316 | //! @brief Fitness of the personal best position. |
| 317 | double persBestFitness{0.0}; |
| 318 | }; |
| 319 | //! @brief Alias for the swarm information. |
| 320 | using Swarm = std::vector<Individual>; |
| 321 | //! @brief Initialize the swarm. |
| 322 | //! @param left - left endpoint |
| 323 | //! @param right - right endpoint |
| 324 | //! @return initial swarm |
| 325 | Swarm swarmInit(const double left, const double right); |
| 326 | //! @brief Update the velocity and position of each particle in the swarm. |
| 327 | //! @param swarm - particle swarm |
| 328 | //! @param iteration - current number of iterations |
| 329 | //! @param gloBest - global best position |
| 330 | //! @param left - left endpoint |
| 331 | //! @param right - right endpoint |
| 332 | //! @param eps - precision of calculation |
| 333 | void updateParticles( |
| 334 | Swarm& swarm, |
| 335 | const std::uint32_t iteration, |
| 336 | const double gloBest, |
| 337 | const double left, |
| 338 | const double right, |
| 339 | const double eps); |
| 340 | //! @brief Non-linear decreasing weight. |
| 341 | //! @param iteration - current number of iterations |
| 342 | //! @return inertia weight |
| 343 | [[nodiscard]] double nonlinearDecreasingWeight(const std::uint32_t iteration) const; |
| 344 | //! @brief Update the personal best position of each particle in the swarm and the global best position. |
| 345 | //! @param swarm - particle swarm |
| 346 | //! @param gloBest - global best position |
| 347 | //! @param gloBestFitness - fitness of the global best position |
| 348 | static void updateBests(Swarm& swarm, double& gloBest, double& gloBestFitness); |
| 349 | }; |
| 350 | |
| 351 | //! @brief Ant colony optimization (ACO). |
| 352 | class Ant : public Optimal |
| 353 | { |
| 354 | public: |
| 355 | //! @brief Construct a new Ant object. |
| 356 | //! @param func - target function |
| 357 | //! @param rho - predefined pheromone evaporation rate |
| 358 | //! @param p0 - predefined exploration probability |
| 359 | //! @param initialStep - predefined initial step length |
| 360 | //! @param numOfAnts - predefined number of ants |
| 361 | //! @param maxIterations - predefined maximum number of iterations |
| 362 | explicit Ant( |
| 363 | Function func, |
| 364 | const double rho = 0.9, |
| 365 | const double p0 = 0.2, |
| 366 | const double initialStep = 1.0, |
| 367 | const std::uint32_t numOfAnts = 500, |
| 368 | const std::uint32_t maxIterations = 100) : |
| 369 | func{std::move(func)}, |
| 370 | rho{rho}, |
| 371 | p0{p0}, |
| 372 | initialStep{initialStep}, |
| 373 | numOfAnts{numOfAnts}, |
| 374 | maxIterations{maxIterations} |
| 375 | { |
| 376 | } |
| 377 | |
| 378 | //! @brief The operator (()) overloading of Ant class. |
| 379 | //! @param left - left endpoint |
| 380 | //! @param right - right endpoint |
| 381 | //! @param eps - precision of calculation |
| 382 | //! @return result of optimal |
| 383 | std::optional<std::tuple<double, double>> operator()( |
| 384 | const double left, const double right, const double eps) override; |
| 385 | |
| 386 | private: |
| 387 | //! @brief Target function. |
| 388 | const Function func; |
| 389 | //! @brief Pheromone evaporation rate. |
| 390 | const double rho{0.9}; |
| 391 | //! @brief Exploration probability. |
| 392 | const double p0{0.2}; |
| 393 | //! @brief Initial step length. |
| 394 | const double initialStep{1.0}; |
| 395 | //! @brief Number of ants. |
| 396 | const std::uint32_t numOfAnts{500}; |
| 397 | //! @brief Maximum number of iterations. |
| 398 | const std::uint32_t maxIterations{100}; |
| 399 | //! @brief Random engine. |
| 400 | std::mt19937_64 engine{std::random_device{}()}; |
| 401 | //! @brief Coefficient of the step length for the local search. |
| 402 | std::uniform_real_distribution<double> localCoeff{-1.0, 1.0}; |
| 403 | //! @brief Coefficient of the range for the global search. |
| 404 | std::uniform_real_distribution<double> globalCoeff{-0.5, 0.5}; |
| 405 | |
| 406 | //! @brief State of the ant in the colony. |
| 407 | struct State |
| 408 | { |
| 409 | //! @brief Position coordinate. |
| 410 | double position{0.0}; |
| 411 | //! @brief Pheromone intensity level. |
| 412 | double pheromone{0.0}; |
| 413 | //! @brief Transition probability. |
| 414 | double transPr{0.0}; |
| 415 | }; |
| 416 | //! @brief Alias for the colony information. |
| 417 | using Colony = std::vector<State>; |
| 418 | //! @brief Initialize the colony. |
| 419 | //! @param left - left endpoint |
| 420 | //! @param right - right endpoint |
| 421 | //! @return initial colony |
| 422 | Colony colonyInit(const double left, const double right); |
| 423 | //! @brief Perform the state transition for each ant in the colony. |
| 424 | //! @param colony - ant colony |
| 425 | //! @param eps - precision of calculation |
| 426 | static void stateTransition(Colony& colony, const double eps); |
| 427 | //! @brief Construct the paths of the ants in the search space. |
| 428 | //! @param colony - ant colony |
| 429 | //! @param stepLen - step length |
| 430 | //! @param left - left endpoint |
| 431 | //! @param right - right endpoint |
| 432 | void pathConstruction(Colony& colony, const double stepLen, const double left, const double right); |
| 433 | //! @brief Update the pheromone intensity levels. |
| 434 | //! @param colony - ant colony |
| 435 | void updatePheromones(Colony& colony); |
| 436 | }; |
| 437 | |
| 438 | //! @brief Genetic algorithm (GA). |
| 439 | class Genetic : public Optimal |
| 440 | { |
| 441 | public: |
| 442 | //! @brief Construct a new Genetic object. |
| 443 | //! @param func - target function |
| 444 | //! @param crossPr - predefined crossover probability |
| 445 | //! @param mutatePr - predefined mutation probability |
| 446 | //! @param popSize - predefined population size |
| 447 | //! @param numOfGenerations - predefined number of generations |
| 448 | explicit Genetic( |
| 449 | Function func, |
| 450 | const double crossPr = 0.7, |
| 451 | const double mutatePr = 0.001, |
| 452 | const std::uint32_t popSize = 500, |
| 453 | const std::uint32_t numOfGenerations = 10) : |
| 454 | func{std::move(func)}, |
| 455 | crossPr{crossPr}, |
| 456 | mutatePr{mutatePr}, |
| 457 | popSize{popSize}, |
| 458 | numOfGenerations{numOfGenerations} |
| 459 | { |
| 460 | } |
| 461 | |
| 462 | //! @brief The operator (()) overloading of Genetic class. |
| 463 | //! @param left - left endpoint |
| 464 | //! @param right - right endpoint |
| 465 | //! @param eps - precision of calculation |
| 466 | //! @return result of optimal |
| 467 | std::optional<std::tuple<double, double>> operator()( |
| 468 | const double left, const double right, const double eps) override; |
| 469 | |
| 470 | private: |
| 471 | //! @brief Target function. |
| 472 | const Function func; |
| 473 | //! @brief Crossover probability. |
| 474 | const double crossPr{0.7}; |
| 475 | //! @brief Mutation probability. |
| 476 | const double mutatePr{0.001}; |
| 477 | //! @brief Population size. |
| 478 | const std::uint32_t popSize{500}; |
| 479 | //! @brief Number of generations. |
| 480 | const std::uint32_t numOfGenerations{10}; |
| 481 | //! @brief Random engine. |
| 482 | std::mt19937_64 engine{std::random_device{}()}; |
| 483 | //! @brief The probability of a possible event (from 0 to 1). |
| 484 | std::uniform_real_distribution<double> probability{0.0, 1.0}; |
| 485 | //! @brief The linear scaling coefficient. |
| 486 | static constexpr double cMult{1.01}; |
| 487 | //! @brief Minimum length of chromosome. |
| 488 | static constexpr std::uint32_t minChrLen{2}; |
| 489 | //! @brief Length of chromosome. |
| 490 | std::uint32_t chromosomeLen{0}; |
| 491 | //! @brief Properties of species. |
| 492 | struct Property |
| 493 | { |
| 494 | //! @brief Left endpoint. |
| 495 | double lower{0.0}; |
| 496 | //! @brief Right endpoint. |
| 497 | double upper{0.0}; |
| 498 | //! @brief The precision of calculation. |
| 499 | double prec{0.0}; |
| 500 | } /** @brief A Property object for storing properties of species. */ property{}; |
| 501 | |
| 502 | //! @brief Update species. |
| 503 | //! @param left - left endpoint |
| 504 | //! @param right - right endpoint |
| 505 | //! @param eps - precision of calculation |
| 506 | //! @return success or failure |
| 507 | bool updateSpecies(const double left, const double right, const double eps); |
| 508 | //! @brief Alias for the individual's chromosome in species. |
| 509 | using Chromosome = std::vector<std::uint8_t>; |
| 510 | //! @brief Alias for the population in species. |
| 511 | using Population = std::vector<Chromosome>; |
| 512 | //! @brief The genetic decode. |
| 513 | //! @param chr - individual's chromosome |
| 514 | //! @return decoded value |
| 515 | [[nodiscard]] double geneticDecode(const Chromosome& chr) const; |
| 516 | //! @brief Initialize the population with binary. |
| 517 | //! @return initial population |
| 518 | Population populationInit(); |
| 519 | //! @brief The genetic cross. |
| 520 | //! @param chr1 - chromosome from one of the parents |
| 521 | //! @param chr2 - chromosome from one of the parents |
| 522 | void geneticCross(Chromosome& chr1, Chromosome& chr2); |
| 523 | //! @brief Chromosomal crossover in the population. |
| 524 | //! @param pop - whole population |
| 525 | void crossover(Population& pop); |
| 526 | //! @brief The genetic mutation. |
| 527 | //! @param chr - individual's chromosome |
| 528 | void geneticMutation(Chromosome& chr); |
| 529 | //! @brief Chromosomal mutation in the population. |
| 530 | //! @param pop - whole population |
| 531 | void mutate(Population& pop); |
| 532 | //! @brief Calculate the fitness of the individual. |
| 533 | //! @param chr - individual's chromosome |
| 534 | //! @return fitness of the individual |
| 535 | double calculateFitness(const Chromosome& chr); |
| 536 | //! @brief The Goldberg linear scaling. |
| 537 | //! @param fitness - original fitness |
| 538 | //! @param eps - precision of calculation |
| 539 | //! @return coefficient of the linear transformation |
| 540 | static std::optional<std::pair<double, double>> goldbergLinearScaling( |
| 541 | const std::vector<double>& fitness, const double eps); |
| 542 | //! @brief The roulette wheel selection. |
| 543 | //! @param pop - whole population |
| 544 | //! @param cumFitness - cumulative fitness |
| 545 | //! @return selected competitor |
| 546 | auto rouletteWheelSelection(const Population& pop, const std::vector<double>& cumFitness); |
| 547 | //! @brief The stochastic tournament selection. |
| 548 | //! @param pop - whole population |
| 549 | //! @param cumFitness - cumulative fitness |
| 550 | void stochasticTournamentSelection(Population& pop, const std::vector<double>& cumFitness); |
| 551 | //! @brief The genetic selection. |
| 552 | //! @param pop - whole population |
| 553 | void select(Population& pop); |
| 554 | //! @brief Get the best individual. |
| 555 | //! @param pop - whole population |
| 556 | //! @return the best individual's chromosome |
| 557 | Chromosome getBestIndividual(const Population& pop); |
| 558 | }; |
| 559 | } // namespace optimal |
| 560 | } // namespace algorithm |
| 561 | |