| 1 | /* specfunc/gsl_sf_coulomb.h |
| 2 | * |
| 3 | * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 3 of the License, or (at |
| 8 | * your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but |
| 11 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 18 | */ |
| 19 | |
| 20 | /* Author: G. Jungman */ |
| 21 | |
| 22 | #ifndef __GSL_SF_COULOMB_H__ |
| 23 | #define __GSL_SF_COULOMB_H__ |
| 24 | |
| 25 | #include <gsl/gsl_mode.h> |
| 26 | #include <gsl/gsl_sf_result.h> |
| 27 | |
| 28 | #undef __BEGIN_DECLS |
| 29 | #undef __END_DECLS |
| 30 | #ifdef __cplusplus |
| 31 | # define __BEGIN_DECLS extern "C" { |
| 32 | # define __END_DECLS } |
| 33 | #else |
| 34 | # define __BEGIN_DECLS /* empty */ |
| 35 | # define __END_DECLS /* empty */ |
| 36 | #endif |
| 37 | |
| 38 | __BEGIN_DECLS |
| 39 | |
| 40 | |
| 41 | /* Normalized hydrogenic bound states, radial dependence. */ |
| 42 | |
| 43 | /* R_1 := 2Z sqrt(Z) exp(-Z r) |
| 44 | */ |
| 45 | int gsl_sf_hydrogenicR_1_e(const double Z, const double r, gsl_sf_result * result); |
| 46 | double gsl_sf_hydrogenicR_1(const double Z, const double r); |
| 47 | |
| 48 | /* R_n := norm exp(-Z r/n) (2Z/n)^l Laguerre[n-l-1, 2l+1, 2Z/n r] |
| 49 | * |
| 50 | * normalization such that psi(n,l,r) = R_n Y_{lm} |
| 51 | */ |
| 52 | int gsl_sf_hydrogenicR_e(const int n, const int l, const double Z, const double r, gsl_sf_result * result); |
| 53 | double gsl_sf_hydrogenicR(const int n, const int l, const double Z, const double r); |
| 54 | |
| 55 | |
| 56 | /* Coulomb wave functions F_{lam_F}(eta,x), G_{lam_G}(eta,x) |
| 57 | * and their derivatives; lam_G := lam_F - k_lam_G |
| 58 | * |
| 59 | * lam_F, lam_G > -0.5 |
| 60 | * x > 0.0 |
| 61 | * |
| 62 | * Conventions of Abramowitz+Stegun. |
| 63 | * |
| 64 | * Because there can be a large dynamic range of values, |
| 65 | * overflows are handled gracefully. If an overflow occurs, |
| 66 | * GSL_EOVRFLW is signalled and exponent(s) are returned |
| 67 | * through exp_F, exp_G. These are such that |
| 68 | * |
| 69 | * F_L(eta,x) = fc[k_L] * exp(exp_F) |
| 70 | * G_L(eta,x) = gc[k_L] * exp(exp_G) |
| 71 | * F_L'(eta,x) = fcp[k_L] * exp(exp_F) |
| 72 | * G_L'(eta,x) = gcp[k_L] * exp(exp_G) |
| 73 | */ |
| 74 | int |
| 75 | gsl_sf_coulomb_wave_FG_e(const double eta, const double x, |
| 76 | const double lam_F, |
| 77 | const int k_lam_G, |
| 78 | gsl_sf_result * F, gsl_sf_result * Fp, |
| 79 | gsl_sf_result * G, gsl_sf_result * Gp, |
| 80 | double * exp_F, double * exp_G); |
| 81 | |
| 82 | |
| 83 | /* F_L(eta,x) as array */ |
| 84 | int gsl_sf_coulomb_wave_F_array( |
| 85 | double lam_min, int kmax, |
| 86 | double eta, double x, |
| 87 | double * fc_array, |
| 88 | double * F_exponent |
| 89 | ); |
| 90 | |
| 91 | /* F_L(eta,x), G_L(eta,x) as arrays */ |
| 92 | int gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax, |
| 93 | double eta, double x, |
| 94 | double * fc_array, double * gc_array, |
| 95 | double * F_exponent, |
| 96 | double * G_exponent |
| 97 | ); |
| 98 | |
| 99 | /* F_L(eta,x), G_L(eta,x), F'_L(eta,x), G'_L(eta,x) as arrays */ |
| 100 | int gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax, |
| 101 | double eta, double x, |
| 102 | double * fc_array, double * fcp_array, |
| 103 | double * gc_array, double * gcp_array, |
| 104 | double * F_exponent, |
| 105 | double * G_exponent |
| 106 | ); |
| 107 | |
| 108 | /* Coulomb wave function divided by the argument, |
| 109 | * F(eta, x)/x. This is the function which reduces to |
| 110 | * spherical Bessel functions in the limit eta->0. |
| 111 | */ |
| 112 | int gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax, |
| 113 | double eta, double x, |
| 114 | double * fc_array, |
| 115 | double * F_exponent |
| 116 | ); |
| 117 | |
| 118 | |
| 119 | /* Coulomb wave function normalization constant. |
| 120 | * [Abramowitz+Stegun 14.1.8, 14.1.9] |
| 121 | */ |
| 122 | int gsl_sf_coulomb_CL_e(double L, double eta, gsl_sf_result * result); |
| 123 | int gsl_sf_coulomb_CL_array(double Lmin, int kmax, double eta, double * cl); |
| 124 | |
| 125 | |
| 126 | __END_DECLS |
| 127 | |
| 128 | #endif /* __GSL_SF_COULOMB_H__ */ |
| 129 | |