1/* specfunc/gsl_sf_coulomb.h
2 *
3 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3 of the License, or (at
8 * your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20/* Author: G. Jungman */
21
22#ifndef __GSL_SF_COULOMB_H__
23#define __GSL_SF_COULOMB_H__
24
25#include <gsl/gsl_mode.h>
26#include <gsl/gsl_sf_result.h>
27
28#undef __BEGIN_DECLS
29#undef __END_DECLS
30#ifdef __cplusplus
31# define __BEGIN_DECLS extern "C" {
32# define __END_DECLS }
33#else
34# define __BEGIN_DECLS /* empty */
35# define __END_DECLS /* empty */
36#endif
37
38__BEGIN_DECLS
39
40
41/* Normalized hydrogenic bound states, radial dependence. */
42
43/* R_1 := 2Z sqrt(Z) exp(-Z r)
44 */
45int gsl_sf_hydrogenicR_1_e(const double Z, const double r, gsl_sf_result * result);
46double gsl_sf_hydrogenicR_1(const double Z, const double r);
47
48/* R_n := norm exp(-Z r/n) (2Z/n)^l Laguerre[n-l-1, 2l+1, 2Z/n r]
49 *
50 * normalization such that psi(n,l,r) = R_n Y_{lm}
51 */
52int gsl_sf_hydrogenicR_e(const int n, const int l, const double Z, const double r, gsl_sf_result * result);
53double gsl_sf_hydrogenicR(const int n, const int l, const double Z, const double r);
54
55
56/* Coulomb wave functions F_{lam_F}(eta,x), G_{lam_G}(eta,x)
57 * and their derivatives; lam_G := lam_F - k_lam_G
58 *
59 * lam_F, lam_G > -0.5
60 * x > 0.0
61 *
62 * Conventions of Abramowitz+Stegun.
63 *
64 * Because there can be a large dynamic range of values,
65 * overflows are handled gracefully. If an overflow occurs,
66 * GSL_EOVRFLW is signalled and exponent(s) are returned
67 * through exp_F, exp_G. These are such that
68 *
69 * F_L(eta,x) = fc[k_L] * exp(exp_F)
70 * G_L(eta,x) = gc[k_L] * exp(exp_G)
71 * F_L'(eta,x) = fcp[k_L] * exp(exp_F)
72 * G_L'(eta,x) = gcp[k_L] * exp(exp_G)
73 */
74int
75gsl_sf_coulomb_wave_FG_e(const double eta, const double x,
76 const double lam_F,
77 const int k_lam_G,
78 gsl_sf_result * F, gsl_sf_result * Fp,
79 gsl_sf_result * G, gsl_sf_result * Gp,
80 double * exp_F, double * exp_G);
81
82
83/* F_L(eta,x) as array */
84int gsl_sf_coulomb_wave_F_array(
85 double lam_min, int kmax,
86 double eta, double x,
87 double * fc_array,
88 double * F_exponent
89 );
90
91/* F_L(eta,x), G_L(eta,x) as arrays */
92int gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax,
93 double eta, double x,
94 double * fc_array, double * gc_array,
95 double * F_exponent,
96 double * G_exponent
97 );
98
99/* F_L(eta,x), G_L(eta,x), F'_L(eta,x), G'_L(eta,x) as arrays */
100int gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax,
101 double eta, double x,
102 double * fc_array, double * fcp_array,
103 double * gc_array, double * gcp_array,
104 double * F_exponent,
105 double * G_exponent
106 );
107
108/* Coulomb wave function divided by the argument,
109 * F(eta, x)/x. This is the function which reduces to
110 * spherical Bessel functions in the limit eta->0.
111 */
112int gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax,
113 double eta, double x,
114 double * fc_array,
115 double * F_exponent
116 );
117
118
119/* Coulomb wave function normalization constant.
120 * [Abramowitz+Stegun 14.1.8, 14.1.9]
121 */
122int gsl_sf_coulomb_CL_e(double L, double eta, gsl_sf_result * result);
123int gsl_sf_coulomb_CL_array(double Lmin, int kmax, double eta, double * cl);
124
125
126__END_DECLS
127
128#endif /* __GSL_SF_COULOMB_H__ */
129