| 1 | /* specfunc/gsl_sf_ellint.h |
| 2 | * |
| 3 | * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 3 of the License, or (at |
| 8 | * your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but |
| 11 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 18 | */ |
| 19 | |
| 20 | /* Author: G. Jungman */ |
| 21 | |
| 22 | #ifndef __GSL_SF_ELLINT_H__ |
| 23 | #define __GSL_SF_ELLINT_H__ |
| 24 | |
| 25 | #include <gsl/gsl_mode.h> |
| 26 | #include <gsl/gsl_sf_result.h> |
| 27 | |
| 28 | #undef __BEGIN_DECLS |
| 29 | #undef __END_DECLS |
| 30 | #ifdef __cplusplus |
| 31 | # define __BEGIN_DECLS extern "C" { |
| 32 | # define __END_DECLS } |
| 33 | #else |
| 34 | # define __BEGIN_DECLS /* empty */ |
| 35 | # define __END_DECLS /* empty */ |
| 36 | #endif |
| 37 | |
| 38 | __BEGIN_DECLS |
| 39 | |
| 40 | |
| 41 | /* Legendre form of complete elliptic integrals |
| 42 | * |
| 43 | * K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] |
| 44 | * E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] |
| 45 | * |
| 46 | * exceptions: GSL_EDOM |
| 47 | */ |
| 48 | int gsl_sf_ellint_Kcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); |
| 49 | double gsl_sf_ellint_Kcomp(double k, gsl_mode_t mode); |
| 50 | |
| 51 | int gsl_sf_ellint_Ecomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); |
| 52 | double gsl_sf_ellint_Ecomp(double k, gsl_mode_t mode); |
| 53 | |
| 54 | int gsl_sf_ellint_Pcomp_e(double k, double n, gsl_mode_t mode, gsl_sf_result * result); |
| 55 | double gsl_sf_ellint_Pcomp(double k, double n, gsl_mode_t mode); |
| 56 | |
| 57 | int gsl_sf_ellint_Dcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); |
| 58 | double gsl_sf_ellint_Dcomp(double k, gsl_mode_t mode); |
| 59 | |
| 60 | |
| 61 | /* Legendre form of incomplete elliptic integrals |
| 62 | * |
| 63 | * F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] |
| 64 | * E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] |
| 65 | * P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] |
| 66 | * D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0) |
| 67 | * |
| 68 | * F: [Carlson, Numerische Mathematik 33 (1979) 1, (4.1)] |
| 69 | * E: [Carlson, ", (4.2)] |
| 70 | * P: [Carlson, ", (4.3)] |
| 71 | * D: [Carlson, ", (4.4)] |
| 72 | * |
| 73 | * exceptions: GSL_EDOM |
| 74 | */ |
| 75 | int gsl_sf_ellint_F_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); |
| 76 | double gsl_sf_ellint_F(double phi, double k, gsl_mode_t mode); |
| 77 | |
| 78 | int gsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); |
| 79 | double gsl_sf_ellint_E(double phi, double k, gsl_mode_t mode); |
| 80 | |
| 81 | int gsl_sf_ellint_P_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result); |
| 82 | double gsl_sf_ellint_P(double phi, double k, double n, gsl_mode_t mode); |
| 83 | |
| 84 | int gsl_sf_ellint_D_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); |
| 85 | double gsl_sf_ellint_D(double phi, double k, gsl_mode_t mode); |
| 86 | |
| 87 | |
| 88 | /* Carlson's symmetric basis of functions |
| 89 | * |
| 90 | * RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}] |
| 91 | * RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}] |
| 92 | * RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}] |
| 93 | * RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}] |
| 94 | * |
| 95 | * exceptions: GSL_EDOM |
| 96 | */ |
| 97 | int gsl_sf_ellint_RC_e(double x, double y, gsl_mode_t mode, gsl_sf_result * result); |
| 98 | double gsl_sf_ellint_RC(double x, double y, gsl_mode_t mode); |
| 99 | |
| 100 | int gsl_sf_ellint_RD_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); |
| 101 | double gsl_sf_ellint_RD(double x, double y, double z, gsl_mode_t mode); |
| 102 | |
| 103 | int gsl_sf_ellint_RF_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); |
| 104 | double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode); |
| 105 | |
| 106 | int gsl_sf_ellint_RJ_e(double x, double y, double z, double p, gsl_mode_t mode, gsl_sf_result * result); |
| 107 | double gsl_sf_ellint_RJ(double x, double y, double z, double p, gsl_mode_t mode); |
| 108 | |
| 109 | |
| 110 | __END_DECLS |
| 111 | |
| 112 | #endif /* __GSL_SF_ELLINT_H__ */ |
| 113 | |