1/* specfunc/gsl_sf_ellint.h
2 *
3 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3 of the License, or (at
8 * your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20/* Author: G. Jungman */
21
22#ifndef __GSL_SF_ELLINT_H__
23#define __GSL_SF_ELLINT_H__
24
25#include <gsl/gsl_mode.h>
26#include <gsl/gsl_sf_result.h>
27
28#undef __BEGIN_DECLS
29#undef __END_DECLS
30#ifdef __cplusplus
31# define __BEGIN_DECLS extern "C" {
32# define __END_DECLS }
33#else
34# define __BEGIN_DECLS /* empty */
35# define __END_DECLS /* empty */
36#endif
37
38__BEGIN_DECLS
39
40
41/* Legendre form of complete elliptic integrals
42 *
43 * K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]
44 * E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]
45 *
46 * exceptions: GSL_EDOM
47 */
48int gsl_sf_ellint_Kcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result);
49double gsl_sf_ellint_Kcomp(double k, gsl_mode_t mode);
50
51int gsl_sf_ellint_Ecomp_e(double k, gsl_mode_t mode, gsl_sf_result * result);
52double gsl_sf_ellint_Ecomp(double k, gsl_mode_t mode);
53
54int gsl_sf_ellint_Pcomp_e(double k, double n, gsl_mode_t mode, gsl_sf_result * result);
55double gsl_sf_ellint_Pcomp(double k, double n, gsl_mode_t mode);
56
57int gsl_sf_ellint_Dcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result);
58double gsl_sf_ellint_Dcomp(double k, gsl_mode_t mode);
59
60
61/* Legendre form of incomplete elliptic integrals
62 *
63 * F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
64 * E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
65 * P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
66 * D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0)
67 *
68 * F: [Carlson, Numerische Mathematik 33 (1979) 1, (4.1)]
69 * E: [Carlson, ", (4.2)]
70 * P: [Carlson, ", (4.3)]
71 * D: [Carlson, ", (4.4)]
72 *
73 * exceptions: GSL_EDOM
74 */
75int gsl_sf_ellint_F_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result);
76double gsl_sf_ellint_F(double phi, double k, gsl_mode_t mode);
77
78int gsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result);
79double gsl_sf_ellint_E(double phi, double k, gsl_mode_t mode);
80
81int gsl_sf_ellint_P_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result);
82double gsl_sf_ellint_P(double phi, double k, double n, gsl_mode_t mode);
83
84int gsl_sf_ellint_D_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result);
85double gsl_sf_ellint_D(double phi, double k, gsl_mode_t mode);
86
87
88/* Carlson's symmetric basis of functions
89 *
90 * RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}]
91 * RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]
92 * RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
93 * RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
94 *
95 * exceptions: GSL_EDOM
96 */
97int gsl_sf_ellint_RC_e(double x, double y, gsl_mode_t mode, gsl_sf_result * result);
98double gsl_sf_ellint_RC(double x, double y, gsl_mode_t mode);
99
100int gsl_sf_ellint_RD_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result);
101double gsl_sf_ellint_RD(double x, double y, double z, gsl_mode_t mode);
102
103int gsl_sf_ellint_RF_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result);
104double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode);
105
106int gsl_sf_ellint_RJ_e(double x, double y, double z, double p, gsl_mode_t mode, gsl_sf_result * result);
107double gsl_sf_ellint_RJ(double x, double y, double z, double p, gsl_mode_t mode);
108
109
110__END_DECLS
111
112#endif /* __GSL_SF_ELLINT_H__ */
113