| 1 | /* specfunc/gsl_sf_hyperg.h |
| 2 | * |
| 3 | * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 3 of the License, or (at |
| 8 | * your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but |
| 11 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 18 | */ |
| 19 | |
| 20 | /* Author: G. Jungman */ |
| 21 | |
| 22 | #ifndef __GSL_SF_HYPERG_H__ |
| 23 | #define __GSL_SF_HYPERG_H__ |
| 24 | |
| 25 | #include <gsl/gsl_sf_result.h> |
| 26 | |
| 27 | #undef __BEGIN_DECLS |
| 28 | #undef __END_DECLS |
| 29 | #ifdef __cplusplus |
| 30 | # define __BEGIN_DECLS extern "C" { |
| 31 | # define __END_DECLS } |
| 32 | #else |
| 33 | # define __BEGIN_DECLS /* empty */ |
| 34 | # define __END_DECLS /* empty */ |
| 35 | #endif |
| 36 | |
| 37 | __BEGIN_DECLS |
| 38 | |
| 39 | |
| 40 | /* Hypergeometric function related to Bessel functions |
| 41 | * 0F1[c,x] = |
| 42 | * Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x]) |
| 43 | * Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x]) |
| 44 | * |
| 45 | * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW |
| 46 | */ |
| 47 | int gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result); |
| 48 | double gsl_sf_hyperg_0F1(const double c, const double x); |
| 49 | |
| 50 | |
| 51 | /* Confluent hypergeometric function for integer parameters. |
| 52 | * 1F1[m,n,x] = M(m,n,x) |
| 53 | * |
| 54 | * exceptions: |
| 55 | */ |
| 56 | int gsl_sf_hyperg_1F1_int_e(const int m, const int n, const double x, gsl_sf_result * result); |
| 57 | double gsl_sf_hyperg_1F1_int(const int m, const int n, double x); |
| 58 | |
| 59 | |
| 60 | /* Confluent hypergeometric function. |
| 61 | * 1F1[a,b,x] = M(a,b,x) |
| 62 | * |
| 63 | * exceptions: |
| 64 | */ |
| 65 | int gsl_sf_hyperg_1F1_e(const double a, const double b, const double x, gsl_sf_result * result); |
| 66 | double gsl_sf_hyperg_1F1(double a, double b, double x); |
| 67 | |
| 68 | |
| 69 | /* Confluent hypergeometric function for integer parameters. |
| 70 | * U(m,n,x) |
| 71 | * |
| 72 | * exceptions: |
| 73 | */ |
| 74 | int gsl_sf_hyperg_U_int_e(const int m, const int n, const double x, gsl_sf_result * result); |
| 75 | double gsl_sf_hyperg_U_int(const int m, const int n, const double x); |
| 76 | |
| 77 | |
| 78 | /* Confluent hypergeometric function for integer parameters. |
| 79 | * U(m,n,x) |
| 80 | * |
| 81 | * exceptions: |
| 82 | */ |
| 83 | int gsl_sf_hyperg_U_int_e10_e(const int m, const int n, const double x, gsl_sf_result_e10 * result); |
| 84 | |
| 85 | |
| 86 | /* Confluent hypergeometric function. |
| 87 | * U(a,b,x) |
| 88 | * |
| 89 | * exceptions: |
| 90 | */ |
| 91 | int gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result); |
| 92 | double gsl_sf_hyperg_U(const double a, const double b, const double x); |
| 93 | |
| 94 | |
| 95 | /* Confluent hypergeometric function. |
| 96 | * U(a,b,x) |
| 97 | * |
| 98 | * exceptions: |
| 99 | */ |
| 100 | int gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x, gsl_sf_result_e10 * result); |
| 101 | |
| 102 | |
| 103 | /* Gauss hypergeometric function 2F1[a,b,c,x] |
| 104 | * |x| < 1 |
| 105 | * |
| 106 | * exceptions: |
| 107 | */ |
| 108 | int gsl_sf_hyperg_2F1_e(double a, double b, const double c, const double x, gsl_sf_result * result); |
| 109 | double gsl_sf_hyperg_2F1(double a, double b, double c, double x); |
| 110 | |
| 111 | |
| 112 | /* Gauss hypergeometric function |
| 113 | * 2F1[aR + I aI, aR - I aI, c, x] |
| 114 | * |x| < 1 |
| 115 | * |
| 116 | * exceptions: |
| 117 | */ |
| 118 | int gsl_sf_hyperg_2F1_conj_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result); |
| 119 | double gsl_sf_hyperg_2F1_conj(double aR, double aI, double c, double x); |
| 120 | |
| 121 | |
| 122 | /* Renormalized Gauss hypergeometric function |
| 123 | * 2F1[a,b,c,x] / Gamma[c] |
| 124 | * |x| < 1 |
| 125 | * |
| 126 | * exceptions: |
| 127 | */ |
| 128 | int gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c, const double x, gsl_sf_result * result); |
| 129 | double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x); |
| 130 | |
| 131 | |
| 132 | /* Renormalized Gauss hypergeometric function |
| 133 | * 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c] |
| 134 | * |x| < 1 |
| 135 | * |
| 136 | * exceptions: |
| 137 | */ |
| 138 | int gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result); |
| 139 | double gsl_sf_hyperg_2F1_conj_renorm(double aR, double aI, double c, double x); |
| 140 | |
| 141 | |
| 142 | /* Mysterious hypergeometric function. The series representation |
| 143 | * is a divergent hypergeometric series. However, for x < 0 we |
| 144 | * have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x) |
| 145 | * |
| 146 | * exceptions: GSL_EDOM |
| 147 | */ |
| 148 | int gsl_sf_hyperg_2F0_e(const double a, const double b, const double x, gsl_sf_result * result); |
| 149 | double gsl_sf_hyperg_2F0(const double a, const double b, const double x); |
| 150 | |
| 151 | |
| 152 | __END_DECLS |
| 153 | |
| 154 | #endif /* __GSL_SF_HYPERG_H__ */ |
| 155 | |